网络百科新概念
提示
 正文中的蓝色文字是词条,点击蓝色文字可进入该词条页面;
 正文中的红色文字是尚待创建的词条,点击红色文字可进入创建词条页面;
 欢迎参与词条创建或编辑修改!人人为我,我为人人。共同建设中文百科在线,共创知识文明!
zwbkorg
关注微信,获取更多信息
阅读 4730 次 历史版本 0个 创建者:冰菊物语 (2013/4/26 16:54:09)  最新编辑:冰菊物语 (2013/4/26 16:54:09)
赤道仪
拼音:Chìdào Yí (Chidao Yi)
目录[ 隐藏 ]
  赤道仪是为了改进地平式装置的缺点而制作出来的。它的主要目的就是想克服地球自转对观星的影响。
 

类型

 
赤道仪
                 赤道仪
  赤道式装置有许多不同类型,主要有:

  ①德国式 常用于安装镜筒较长的折射望远镜。赤纬轴的另一端装有平衡锤。

  ②英国式 赤纬轴在极轴当中,镜筒和平衡锤位于两侧,宜用于较低的地理纬度。

  ③轭式或摇篮式 其优点是两轴在负荷下的变形不影响指向精度。缺点是不能观测天极附近的区域。

  ④马蹄式 常用于大望远镜。

  ⑤叉式 常用于镜筒短的望远镜和赤纬变化小的太阳望远镜。
 

追踪速度


  一般的赤道仪摩打均只利用恒星速来进行追踪;一些较高档的赤道仪会包括月球速、太阳速及甚至帝王速来达更理想的追踪效果。

  恒星速:根据地球自转速度(每日1,436.5分钟)来追踪,是一般赤道仪的标准追踪速度。

  月球速:根据月球的公转及地球自转、配合月球在天空上移动的速度作追踪。

  太阳速:根据地球的公转及自转、配合太阳在天空上移动的速度作追踪。

  帝王速:根据一位叫King的天文学家的发现,把地球大气所造成的视觉追踪误差引入的追踪速度;适合长时间追踪及拍摄深空天体。
 

运转


  目前的赤道仪很少不是用电力来做为自动追踪的动力来源,日本卖过上发条的产品。手动的方式,因为那可以让 用转动把手的转数来确定移动的角度有约略有多大,那在找一些暗星格外好用。

  听说政治大学天文社的反射赤道仪也做了改装手动把手的工作,以社团的发展来说,真是慧眼独具。虽然我不懂这些马达、 电子的,但是仍然有些心得可以提出。有些用赤道仪的同好会忽然发现它不能调整转速了,就要先看一下是否转轴(含极轴、赤纬轴)没锁上;另外其中齿轮组之间的游隙也会有很大的影响,主要是在“延迟动作”等现象。有人曾以减少齿轮间的距离来减少游隙的影响,虽 然这样的做法不会影响它的平均速度,但是磨损和瞬间最高、低速乖离可能会改变,是值得高中生做研究的题目。当然这些日本小工厂的产品是否真的值得我们如此考究,那就不得而知了。

  赤道仪的转轴锁位置不尽相同,有些是不动的,有些是会动的,要找一台顺手的赤道 仪,这方面的考量是极重要的。倍率若达七十倍以上,找个人帮您锁 定赤道仪是个好主意,因为等您找到目标再去锁,可能又逸出视野了。有些赤道仪的马达与VOLVO 960同级,会有和暴冲类似的 “续冲”现象,据熟悉电机的同好的做法,是重做一个更精致的控制 盒,不但有数字显示,也在高速煞停时,迅速的一步步的降下速度, 像汽车的ABS一样。“续冲”的现象与控制盒、齿轮组关联较大, 与步进马达的关联较少。不深究了,反正不专业的人知道有这件事就 好,只是“会续冲”的赤道仪不见得是中、低层次的,高级品也有些 会有,是否全部都有就不得而知,各位只要好好的了解一下自己的赤 道仪在何种高速转动下会续冲,适当的避免那样的状况。
 

功能


  赤道仪最大特点在于其中一条转轴(赤经轴)与地球自转轴平行,当赤道仪令望远镜沿此轴以一恒星日一周的速度自东向西转动时,便可抵销地球自转的影响,令目标天体的影像固定于视场内,以方便观测及拍摄。由于赤经轴在使用前一定要对准北天极(以北极星为指标),所以赤经轴亦称为极轴。

  由于以赤道仪追踪恒星,望远镜亦跟着星空“绕目标天体转动”,视场与视场内的天体不会有相对运动(包括转动),而利用经纬仪追踪时,只有单纯把目标天体固定,视场中其他恒星会以目标星旋转,对拍摄造成影响;这也是赤道仪不能被经纬仪取代的一个重要功能。

  推动装置

  在电力发明前,赤道仪通常人手操作、利用水力转钟或发条转钟等机械装置推动。在电力发明后则采用马达。由于太阳、月球、彗星皆相对于背景恒星运动,故此现代的赤道仪能调校马达转速,使赤道仪能调校速度(加速或减速)以锁定这些天体。

使用方法

 
赤道仪的使用方法
     赤道仪的使用方法
  肉眼可见的天体,用寻星镜就可对准,赤道仪之作微调跟踪之用。而深空天体就必须利用赤道仪的时角、赤纬度盘才能找到。

  赤道仪有三个轴:

  1. 地平轴。垂直于地平面,下端与三脚架台连接,上端与极轴连接,有地平高度刻度盘。绕地平轴旋转可调整望远镜的地平方位角。

  2. 极轴。一端与地平轴相连,上下扳动极轴可调整地平高度角。另一端与赤纬轴成90o角连接,装有时角度盘,用于望远镜指向的时角(赤经)调整。

  3. 赤纬轴。与极轴成90o相连,上端与主镜筒成90o相连,以保证镜筒与极轴平行。下端连接平衡锤,装有赤纬度盘,用于望远镜指向的赤纬度调整。

  (二)对准、观测深空暗天体

  第一步:极轴调整。使望远镜极轴和地球自转轴平行,指向北天极。

  1. 主镜与赤道仪、三角架连接好,把有“N”标志的一条腿摆在正北方。调整三角架高度,使三角架台水平。2. 松开极轴(赤经轴)制紧螺钉,把主镜旋转到左边或右边。松开平衡锤制紧螺钉,移动平衡锤,使望远镜与锤平衡。把望远镜旋回上方,制紧螺钉。

  3. 松开地平制紧螺钉,转动赤道仪,使极轴(望远镜)指向北方(指南针定向),制紧螺钉。

  4. 松开极轴与地平轴连接制紧螺钉,上下扳动极轴,使指针对准观测地点的地理纬度(例:济南地理纬度为+36.6o,即北纬+36.6o),制紧螺钉。

  5. 松开赤纬轴制紧螺钉,转动望远镜使其与极轴平行(亦即与当地经线圈平行),制紧螺钉。

  6. 从望远镜(或调好光轴的寻星镜)中观看北极星是否在视场中央,如有偏差,则需对极轴的地平方位角,地平高度角作精细调整,直至北极星在视场中央不再移动。

  7. 拧动时角刻度盘,零时(0h)对准指针;拧动赤纬刻度盘,90o对准指针(有的在出厂时已经固定好90o或0o)。至此,您的望远镜就与地球自转轴、观测点子午面完全平行。任凭地球转动,望远镜始终都对着北极星。特别提示:极轴调整好后,三脚架、极轴方位角、高度角都不能有丝毫移动,否则要重新调整。北天极与北极星不完全重合,而是向小熊座β星偏1o。

  第二步:计算出观测点观测时刻的地方恒星时。例:计算2002年5月1日北京时间19时的济南地方恒星时。1. 从当年天文年历(北京天文馆每年出版一本)中查出2002年5月1日世界时0h格林尼治地方恒星时为:14h35m00s。

  2. 从相关资料中查出济南(观测点)地理经度为东经117o,化为时角为7h48m00s(15o=1h,1o=4m,1’=4s)。

  3. 用下面公式计算 s=So+(m北-8h+λ)+(m北-8h)*0.002738式中 s 地方恒星时,在观测点所测定的春分点γ的时角 So 世界时0h格林尼治地方恒星时 m北 北京地方平时 λ 观测点的地理经度(时角) 8h 北京时间是东八时区标准区时 0.002738 换算系数(1/365.2422) 将已知数据代入公式 S=14h35m00s+(19h00m00s-8h+7h48m00s)+(19h00m00s-8h)*0.002738 =14h35m00s+18h48m00s+00h1m48s =33h24m48s 因为结果大于24h,所以要把其中的24h化为一天,减去24h。S=43h25m13s-24h=19h25m13s答:2002年5月1 日北京时间19h00m00s时的济南地方恒星时是5月2日09h24m48s。

  第三步:计算被观测天体观测时刻的时角(t)。 t:以本地子午圈为起点,由东向西将整个圆周分为24小时(每小时等于15o)。例:狮子座内的m65(河外星系)。

  1. 查出该天体在天球上的坐标为:赤经α=11h18m00s;赤纬δ=13o13’。赤经α:天体在天球上的经度,以通过春分点γ的经纬为0点,由西向东将圆周分为24小时。赤纬δ:天体在天球上的纬度,以天赤道为0o,向北正向南负,各分90o。

  2. 用公式计算t=s-α t=09h24m48s-11h18m00s= -1h53m12s

  第四步:操作望远镜对准天体。

  1. 松开赤纬轴制紧螺钉,旋转主镜,先对准天赤道(赤纬度盘0o),然后向北旋转δ=13o13’,对准赤纬度盘指针,制紧螺钉。

  2. 松开极轴制紧螺钉,绕极轴向东(时角t为负)旋转望远镜,将m65的时角-1h53m12s对准时角刻度盘指针,制紧螺钉。

  3. 先用低倍镜观测m65,如不在视场中央,可用赤经赤纬微调手轮将天体调整到视场中央。由于地球转动,目标会渐渐移出视场,要不断用微调手轮跟踪。若为自动跟踪赤道仪,打开电门即可。

  特别提示:第二天再观测该天体时,因地球公转,该天体的时角将增加3m56s,变为-1h49m16s。
 

设计的优缺点


  台北市立天文科学教育馆内公众大厅展出之德式赤道仪。按照不同需要,赤道仪有多种设计,每种设计皆有其优缺点。
 

英式赤道仪

  英式赤道仪的系统像一个十字架。赤经轴(极轴)的两端由支架支撑著,“赤纬轴”被安装在接近中央的位置。望远镜就安装在赤纬轴的一个末端上,而另外一端则装上适当的配重来维持平衡。
 

德式赤道仪

  德式赤道仪原始型态像一个巨大的T字型,赤经轴架在垂直于地面的基座上,并依据地理纬度的倾斜,以内置之极轴望远镜对准天极。在T字的结合处有轴承使赤经轴与基座结合并转动。赤纬轴则被垂直安置在赤经轴接近中心的位置上。改良的德式赤道仪则将赤纬轴由接近中心的位置移至赤纬轴另一端。

  望远镜固定在赤纬轴的一个末端上,另一端则装上适当重量的平衡锤(或其他东西如沙包等)来保持平衡,防止追踪装置的损坏。德式赤道仪是天文爱好者最常用之望远镜(观测或天文摄影用)赤道仪,从6厘米(2.4吋)的折射镜到35厘米(14吋)史密特-卡赛格林式折反射望远镜都多采用这类赤道仪。
 

轭式赤道仪

  轭式赤道仪将赤经轴做成一个框架的形式,在两端以支架支撑住,赤纬轴就安装在框架内接近中心的位置。望远镜完全被安置在框架内,并且包覆住赤纬轴(有些没有,例如威尔逊山天文台2.5米反射望远镜)。跟德式赤道仪不同,轭式赤道仪不需额外配件平衡。

  由于原始的“轭式赤道仪”其望远镜被安置在框架内,不利于观测天极附近天体。例如,海尔望远镜的叉式赤道仪就将北端改成巨大的马蹄形,以便能观察北天极附近的天体。

  所以,只有对于那种有固定底座、极轴已经对准的固定望远镜,以及对星座很不熟悉的人,它才有优势(我在南京大学天文系的时候就是这么玩法,老师从不教怎么看星座。要看星?先算恒星时,再算时角……哈哈,烦!所以天文系毕业的学生在天上找不到星座一点也不奇怪呀……)。

  另外,直接用天文望远镜找星的确是有点困难的,因为主镜的视场往往很小。所以天文望远镜通常都有一个寻星镜,它的视场比较大,用于辅助找星。当然,如果有一架双筒镜帮忙,会轻松很多。这就是很多有经验的爱好者建议初学者先买双筒望远镜的缘故。

作用

 
赤道仪
               赤道仪
  赤道仪的作用,是相对于经纬仪来说的,虽然大家都应已瞭解,但是还是有一点值得大家共识的,那就是它是一种较经纬仪“更方便追踪”的的架台,只要转一个轴就可以了。但是这样方便的追踪 ,却要付出相当的代价,同时要求得越多,代价也会变大。就陪着日据时代以来台湾许多老一辈同好度过大半生的德式赤道仪来说,它那不能用来看星星的重锤,就够让人麻烦了;虽说如此,叉式赤道仪没有这样的问题,却仍不能受到台湾大部份同好的青睐,实在要说个清楚一些。

  虽然叉式赤道仪在天球南、北极方面的死角是值得一提的,但是至少不影响赤道仪运转,看看德式赤道仪转一下就卡到镜架,这岂不更致命。所以用“死角”一说来避免使用叉式赤道,好像不是绝佳的立论。说起来有些好笑,其实我的猜测这样的现象主要是“对极轴” 所带来的。在哈雷彗星回归之前,同好的数量是极少的,也不太有天文摄影的进行,在这些同好的眼中,用“刻度盘法”所对的极轴已经 相当准确。

  自从高桥的P式赤道仪等的推出,极望逐年成为了德式赤道仪的 配备,连叉式赤道仪也不能免去这样的选购配件。台湾早期的P-2 、TS-90、MARK-X等赤道仪进入台湾后几年,哈雷彗星回归,那还会有人懂得“刻度盘法”之类的极轴修正法,就算有意要做,赤道 仪上也找不到需要的刻度也不一定,反正它也不是非常准。

  说到对极轴,要知道“对准极轴”是摄影者必需的,德式赤道仪容易对极轴的原因除了它容易内装极望之外 ,它可以容许较长的极轴部也是原因之一,相对而言,市售的叉式赤 道仪除了极望需装在外面,相对增加可能的误差外,它的极轴部很短 也是机械构造上的困难所在。

    词条分类[我来完善]

  • 按学科分类: 天文学
  • 按行业分类:
  • 按地域分类:
  • 开放式分类: .

    1
    0
    申明:1.中文百科在线的词条资料来自网友(一些人是某学科领域的专家)贡献,供您查阅参考。一些和您切身相关的具体问题(特别是健康、经济、法律相关问题),出于审慎起见,建议咨询专业人士以获得更有针对性的答案。2.中文百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将及时给予删除。3.如需转载本页面内容,请注明来源于www.zwbk.org

    词条保护申请

  • * 如果用户不希望该词条被修改,可以申请词条保护
    * 管理员审核通过后,该词条会被设为不能修改

    注意:只有该词条的创建者才能申请词条保护

联系我们意见反馈帮助中心免责声明
Copyright © 2010 zwbk.org 中文百科在线 All rights reserved.京ICP证090285号